Show simple item record

dc.contributor.authorLuca Francioso
dc.contributor.authorPasquale Creti
dc.contributor.authorMaria Concetta Martucci
dc.contributor.authorSimonetta Capone
dc.contributor.authorAntonietta Taurino
dc.contributor.authorPietro Siciliano
dc.contributor.authorChiara De Pascali
dc.contributor.otherNational Research Council of Italy, Institute for Microelectronics and Microsystems,73100 Lecce, Italy
dc.contributor.otherNational Research Council of Italy, Institute for Microelectronics and Microsystems,73100 Lecce, Italy
dc.contributor.otherNational Research Council of Italy, Institute for Microelectronics and Microsystems,73100 Lecce, Italy
dc.contributor.otherNational Research Council of Italy, Institute for Microelectronics and Microsystems,73100 Lecce, Italy
dc.contributor.otherNational Research Council of Italy, Institute for Microelectronics and Microsystems,73100 Lecce, Italy
dc.contributor.otherNational Research Council of Italy, Institute for Microelectronics and Microsystems,73100 Lecce, Italy
dc.contributor.otherNational Research Council of Italy, Institute for Microelectronics and Microsystems,73100 Lecce, Italy
dc.date.accessioned2025-10-09T04:38:09Z
dc.date.available2025-10-09T04:38:09Z
dc.date.issued01-11-2018
dc.identifier.urihttps://www.mdpi.com/2504-3900/2/13/1027
dc.identifier.urihttp://digilib.fisipol.ugm.ac.id/repo/handle/15717717/40737
dc.description.abstractPresent work reports the fabrication process and functional gas sensing tests of a 100 nm-gap fingers DiElectroPhoresis (DEP) functionalized MOX (Metal OXide) gas sensor array for VOCs detection at low temperature. The Internet of Things (IoT) scenario applications of the chemical sensing-enabled mobiles or connected devices are many ranging from indoor air quality to novel breath analyser for personal healthcare monitoring. However, the commercial MOX gas sensors operate at moderate temperatures (200–400 °C) [1], and this limits the mobile and wearable gadgets market penetration. Nanogap devices may represent the alternative devices with enhanced sensitivity even at low or room temperature. A nanogap electrodes MOX gas sensor array functionalized with 5 nm average size SnO<sub>2</sub> nanocrystals with positive dielectrophoresis technique is presented. The single sensor active area is 4 × 4 µm<sup>2</sup>. The devices exhibited about 1 order of magnitude response at 100 °C to 150 ppm of acetone.
dc.language.isoEN
dc.publisherMDPI AG
dc.subject.lccGeneral Works
dc.title100 nm-Gap Fingers Dielectrophoresis Functionalized MOX Gas Sensor Array for Low Temperature VOCs Detection
dc.typeArticle
dc.description.keywordsnanogap sensor
dc.description.keywordsmetal oxide sensor
dc.description.keywordsnanofabrication
dc.description.keywordselectron beam lithography
dc.description.keywordsmicroelectronic fabrication
dc.description.keywordslow temperature gas sensing
dc.description.doi10.3390/proceedings2131027
dc.title.journalProceedings
dc.identifier.e-issn2504-3900
dc.identifier.oaioai:doaj.org/journal:9f56ed1dfa934949902635f0482e6a12
dc.journal.infoVolume 2, Issue 13


This item appears in the following Collection(s)

Show simple item record