Show simple item record

dc.contributor.authorAshok K. Singal
dc.contributor.otherAstronomy and Astrophysics Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
dc.date.accessioned2025-10-09T05:27:05Z
dc.date.available2025-10-09T05:27:05Z
dc.date.issued01-04-2021
dc.identifier.urihttps://www.mdpi.com/2218-1997/7/4/107
dc.identifier.urihttp://digilib.fisipol.ugm.ac.id/repo/handle/15717717/41029
dc.description.abstractAccording to the Cosmological Principle, the Universe is isotropic and no preferred direction would be seen by an observer that might be stationary with respect to the expanding cosmic fluid. However, because of observer’s partaking in the solar system peculiar motion, there would appear in some of the observed properties of the Cosmos a dipole anisotropy, which could in turn be exploited to determine the peculiar motion of the solar system. The dipole anisotropy in the Cosmic Microwave Background Radiation (CMBR) has given a peculiar velocity vector 370 km s<inline-formula><math display="inline"><semantics><msup><mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></semantics></math></inline-formula> along <inline-formula><math display="inline"><semantics><mrow><mi>l</mi><mo>=</mo><msup><mn>264</mn><mo>∘</mo></msup><mo>,</mo><mi>b</mi><mo>=</mo><msup><mn>48</mn><mo>∘</mo></msup></mrow></semantics></math></inline-formula>. However, some other dipoles, for instance, from the number counts, sky brightness or redshift distributions in large samples of distant Active Galactic Nuclei (AGNs), have yielded values of the peculiar velocity many times larger than that from the CMBR, though surprisingly, in all cases the directions agreed with the CMBR dipole. Here we determine our peculiar motion from a sample of 0.28 million AGNs, selected from the Mid Infra Red Active Galactic Nuclei (MIRAGN) sample comprising more than a million sources. From this, we find a peculiar velocity, which is more than four times the CMBR value, although the direction seems to be within ∼2<inline-formula><math display="inline"><semantics><mi>σ</mi></semantics></math></inline-formula> of the CMBR dipole. A genuine value of the solar peculiar velocity should be the same irrespective of the data or the technique employed to estimate it. Therefore, such discordant dipole amplitudes might mean that the explanation for these dipoles, including that of the CMBR, might in fact be something else. The observed fact that the direction in all cases is the same, though obtained from completely independent surveys using different instruments and techniques, by different sets of people employing different computing routines, might nonetheless indicate that these dipoles are not merely due to some systematics, otherwise why would they all be pointing along the same direction. It might instead suggest a preferred direction in the Universe, implying a genuine anisotropy, which would violate the Cosmological Principle, the core of the modern cosmology.
dc.language.isoEN
dc.publisherMDPI AG
dc.subject.lccElementary particle physics
dc.titleOur Peculiar Motion Inferred from Number Counts of Mid Infra Red AGNs and the Discordance Seen with the Cosmological Principle
dc.typeArticle
dc.description.keywordsactive galactic nuclei surveys
dc.description.keywordscosmic background radiation
dc.description.keywordslarge-scale structure of the Universe
dc.description.keywordssolar system peculiar motion
dc.description.keywordsCosmological Principle
dc.description.doi10.3390/universe7040107
dc.title.journalUniverse
dc.identifier.e-issn2218-1997
dc.identifier.oaioai:doaj.org/journal:e5a90356fb0348ea8e0fd54a89564e61
dc.journal.infoVolume 7, Issue 4


This item appears in the following Collection(s)

Show simple item record