Show simple item record

dc.contributor.authorQiang Fang
dc.contributor.authorXavier. Maldague
dc.contributor.otherComputer Vision and Systems Laboratory, Department of Electrical and Computer Engineering, Université Laval, av de la Médecine, Québec, QC 1065, Canada
dc.contributor.otherComputer Vision and Systems Laboratory, Department of Electrical and Computer Engineering, Université Laval, av de la Médecine, Québec, QC 1065, Canada
dc.date.accessioned2025-10-09T05:32:54Z
dc.date.available2025-10-09T05:32:54Z
dc.date.issued01-04-2021
dc.identifier.urihttps://www.mdpi.com/2076-3417/11/8/3451
dc.identifier.urihttp://digilib.fisipol.ugm.ac.id/repo/handle/15717717/41153
dc.description.abstractThe authors wish to make the following corrections to this paper [...]
dc.language.isoEN
dc.publisherMDPI AG
dc.subject.lccTechnology
dc.titleAddendum: Fang, Q.; Maldague, X. A Method of Defect Depth Estimation for Simulated Infrared Thermography Data with Deep Learning. <i>Appl. Sci.</i> 2020, <i>10</i>, 6819
dc.typeArticle
dc.description.keywordsn/a
dc.description.doi10.3390/app11083451
dc.title.journalApplied Sciences
dc.identifier.e-issn2076-3417
dc.identifier.oaioai:doaj.org/journal:0fb5e788ebb04514a1231793306f7ce9
dc.journal.infoVolume 11, Issue 8


This item appears in the following Collection(s)

Show simple item record