Aerial Image-Based Crop Row Detection and Weed Pressure Mapping Method
Abstract
Accurate crop row detection is crucial for determining weed pressure (weeds item per square meter). However, this task is complicated by the similarity between crops and weeds, the presence of missing plants within rows, and the varying growth stages of both. Our hypothesis was that in drone imagery captured at altitudes of 20–30 m—where individual plant details are not discernible—weed presence among crops can be statistically detected, allowing for the generation of a weed distribution map. This study proposes a computer vision detection method using images captured by unmanned aerial vehicles (UAVs) consisting of six main phases. The method was tested on 208 images. The algorithm performs well under normal conditions; however, when the weed density is too high, it fails to detect the row direction properly and begins processing misleading data. To investigate these cases, 120 artificial datasets were created with varying parameters, and the scenarios were analyzed. It was found that a rate variable—in-row concentration ratio (IRCR)—can be used to determine whether the result is valid (usable) or invalid (to be discarded). The F1 score is a metric combining precision and recall using a harmonic mean, where “1” indicates that precision and recall are equally weighted, i.e., β = 1 in the general Fβ formula. In the case of moderate weed infestation, where 678 crop plants and 600 weeds were present, the algorithm achieved an F1 score of 86.32% in plant classification, even with a 4% row disturbance level. Furthermore, IRCR also indicates the level of weed pressure in the area. The correlation between the ground truth weed-to-crop ratio and the weed/crop classification rate produced by the algorithm is 98–99%. As a result, the algorithm is capable of filtering out heavily infested areas that require full weed control and capable of generating weed density maps on other cases to support precision weed management.
Date
01-07-2025Author
László Moldvai
Péter Ákos Mesterházi
Gergely Teschner
Anikó Nyéki