Relationship Between Hyperspectral Data and Amino Acid Composition in Soybean Genotypes
Abstract
Spectral reflectance of plants can be readily associated with physiological and biochemical parameters. Thus, relating spectral data to amino acid contents in different genetic materials provides an innovative and efficient approach for understanding and managing genetic diversity. Therefore, this study had two objectives: (I) to differentiate genetic materials according to amino acid contents and spectral reflectance; (II) to establish the relationship between amino acids and spectral bands derived from hyperspectral data. The research was conducted with 32 soybean genetic materials grown in the field during the 2023–2024 crop year. The experimental design involved randomized blocks with four replicates. Leaf spectral data were collected 60 days after plant emergence, when the plants were in full bloom. Three leaf samples were collected from the third fully developed trifoliate leaf, counted from top to bottom, from each plot. The samples were taken to the laboratory, where reflectance readings were obtained using a spectroradiometer, which can measure the 350–2500 nm spectrum. Wavelengths were grouped as means of representative intervals and then organized into 28 bands. Subsequently, the leaf samples from each plot were subjected to quantification analyses for 17 amino acids. Then, the soybean genotypes were subjected to a PCA–K-means analysis to separate the genotypes according to their amino acid content and spectral behavior. A correlation network was constructed to investigate the relationships between the spectral variables and between the amino acids within each group. The groups formed by the different genetic materials exhibited distinct profiles in both amino acid composition and spectral behavior. Leaf reflectance data proved to be efficient in identifying differences between soybean genotypes regarding the amino acid content in the leaves. Leaf reflectance was effective in distinguishing soybean genotypes according to leaf amino acid content. Specific and high-magnitude associations were found between spectral bands and amino acids. Our findings reveal that spectral reflectance can serve as a reliable, non-destructive indicator of amino acid composition in soybean leaves, supporting advanced phenotyping and selection in breeding programs.
Date
01-08-2025Author
Ana Carina da Silva Cândido Seron
Dthenifer Cordeiro Santana
Izadora Araujo Oliveira
Cid Naudi Silva Campos
Larissa Pereira Ribeiro Teodoro
Elber Vinicius Martins Silva
Rafael Felippe Ratke
Fábio Henrique Rojo Baio
Carlos Antonio da Silva Junior
Paulo Eduardo Teodoro