Show simple item record

dc.contributor.authorLin Jia
dc.contributor.authorKun Chen
dc.contributor.authorZeyu Liao
dc.contributor.authorAodong Qiu
dc.contributor.authorMingjian Cao
dc.contributor.otherSchool of Transportation and Electrical Engineering, Hunan University of Technology, Zhuzhou 412007, China
dc.contributor.otherSchool of Transportation and Electrical Engineering, Hunan University of Technology, Zhuzhou 412007, China
dc.contributor.otherCollege of Electrical and Information Engineering, Hunan University, Changsha 410082, China
dc.contributor.otherSchool of Transportation and Electrical Engineering, Hunan University of Technology, Zhuzhou 412007, China
dc.contributor.otherFlaw Detection Work Area of Bridge and Tunnel Maintenance Inspection Center, Guoneng Baoshen Railway Group Co., Ltd., Erdos 017000, China
dc.date.accessioned2025-08-27T13:59:02Z
dc.date.accessioned2025-10-08T09:00:06Z
dc.date.available2025-10-08T09:00:06Z
dc.date.issued01-08-2025
dc.identifier.urihttp://digilib.fisipol.ugm.ac.id/repo/handle/15717717/38538
dc.description.abstractGiven that grinding robots are easily affected by internal and external disturbances when machining complex surfaces with high precision, in this study, an adaptive robust impedance control method combining a radial basis function neural network (RBFNN) and sliding mode control (SMC) is proposed. In a Cartesian coordinate system, we first use the universal approximation ability of the RBFNN to accurately identify and actively compensate for complex unknown disturbances in robot dynamics online. Then, an improved sliding mode impedance controller, which uses robust sliding mode control to effectively suppress the influence of RBFNN identification error and residual disturbance on trajectory tracking and ensure the accuracy of impedance control, is implemented. This approach improves the control performance and overcomes the inherent chattering phenomenon of the traditional sliding mode.
dc.language.isoEN
dc.publisherMDPI AG
dc.subject.lccMaterials of engineering and construction. Mechanics of materials
dc.titleAdaptive Robust Impedance Control of Grinding Robots Based on an RBFNN and the Exponential Reaching Law
dc.typeArticle
dc.description.keywordsgrinding robot
dc.description.keywordsnonlinear identification
dc.description.keywordssliding mode control
dc.description.keywordsimpedance control
dc.description.keywordstrajectory tracking
dc.description.doi10.3390/act14080393
dc.title.journalActuators
dc.identifier.e-issn2076-0825
dc.identifier.oaioai:doaj.org/journal:e050d8d7b87e42be8aa4f21d89c164e7
dc.journal.infoVolume 14, Issue 8


This item appears in the following Collection(s)

Show simple item record